
Fakultät für Informatik und Mathematik Summer semester 2025

Dr. Armin Größlinger

Exercises for Lecture: Practical Parallel Programming

Project 1 (Image Conversion)

Problem 1 (Image Conversion) [10+2 Points]

Write a program that loads a color image in PPM (portable pixmap) format, estimates the color tempe-
rature of the image, converts the image from a given color temperature to a new color temperature and
saves the converted image to an output file. Use the skeleton in /scratch/ppp2025/1/colortemp.tar.
After extracting the skeleton (tar xvf colortemp.tar), create a separate directory for compiling (e.g.,
mkdir build) and configure the project with

cmake ../colortemp # specify path to the source directory

in this directory. After building the project using

make

the generated binary can be found in bin/colortemp and can be run with, e.g., srun bin/colortemp on
the cluster. Use colortemp -h to get a brief summary of the command-line options.

The skeleton contains a sequential implementation of all operations in src/colortemp/single.c; see this
file for the definition of the operations.

(a) Implement the image conversion using MPI in src/colortemp/parallel.c. [5 Points]

Load the image in a single process (e.g. process 0), distribute the image in an efficient manner (for
example using MPI Scatterv), perform the estimation of the color temperature and the conversion
to a new color temperature, collect the resulting image again (in an efficient manner) and save it to
the output file.

(b) As an alternative to loading the image in a single process and distributing it, the image can be loaded
in a parallel fashion. The user can request parallel loading with -L on the command line.

Extend your program such that when -L is specified, the image is loaded using the function
ppp pnm read part to load a part of the image in each process (see also the example program
invert pgm mpi). [2 Points]

(c) Add OpenMP directives to src/colortemp/parallel.c for shared-memory parallelism. [3 Points]

Use shared memory parallelism when estimating the color temperature and when converting the
image to the new color temperature.

(d) (Only for master:) Implement parallel saving of the output image using MPI parallel I/O. [2 Points]

Have a look at function ppp pnm write in src/ppp pnm/ppp pnm.c for the image format. The PPM
format has a simple header followed by the raw image data. Write the header in a single process
(e.g., process 0) and then the image data in a parallel fashion using, e.g., MPI File write at all.

When the option -S is specified on the command line, the program should use this MPI-based
implementation to save the output image instead of calling ppp pnm write.



Test your program using the images in /scratch/ppp2025/1. For benchmarks, you can use the (quite big)
image world.ppm; use /dev/null as output file in this case (to discard the output).

Upload your solution (file parallel.c) in ILIAS. Do not miss the deadline! Late submissions cannot be
accepted due to legal regulations!

Notes:

PPM Images:

Loading and saving PPM images can be done using the functions from the library ppp pnm provi-
ded in the project skeleton. In src/invert pgm you can find the example programs invert pgm.c and
invert pgm mpi.c showing how to use the library (for grayscale images, PGM, portable graymap).

Color images (PPM, portable pixmap) represent the image row by row with 3 bytes per pixel. The three
bytes of a pixel contain the red, green and blue components (in this order).

OpenMP:

The number of MPI processes and cores/hyperthreads for OpenMP threads can be controlled using srun:

srun -n 1 -c 4 ./program

This starts one process on 4 processor cores/hyperthreads.

srun --cpu bind=thread -n 6 -c 4 ./program

This starts 6 MPI processes and each MPI process uses 4 OpenMP threads (24 threads in total). The option
--cpu bind=thread ensures that each MPI process can only use “its” (hyper-)threads of the assigned cores.

You can use the example program /scratch/ppp2025/0/mpi-example.c to see the effect of these options
on the number of processes and threads.

Use MPI functions only outside of omp parallel regions to avoid undesirable interactions between
OpenMP and MPI.

Submission due: Monday, May 19, 2025 at 18:00 via ILIAS


