Chair of Symbolic Computation Prof. Dr. Martin Kreuzer Julian Danner

Computeralgebra – Sheet 1

Summer term 2025

Date:	24.04.2025
Discussion:	02.05.2025

Exercise 1 (Extended Euclidean Algorithm).

Let $a, b \in \mathbb{Z}$. Consider the following sequence of instructions.

- (1) If a = 0 and b = 0, **return** the triple [0, 0, 0]. If a = 0 and $b \neq 0$, **return** the triple $[0, \frac{|b|}{b}, |b|]$. If $a \neq 0$ and b = 0, **return** the triple $[\frac{|a|}{a}, 0, |a|]$.
- (2) Set the triples $[c_0, d_0, e_0] \leftarrow [\frac{|a|}{a}, 0, |a|]$ and $[c_1, d_1, e_1] \leftarrow [0, \frac{|b|}{b}, |b|].$
- (3) If $e_0 < e_1$, swap $[c_0, d_0, e_0] \longleftrightarrow [c_1, d_1, e_1]$.
- (4) Repeat steps (4.1)–(4.3) until $e_1 = 0$.
 - (4.1) Write e_0 in the form $e_0 = qe_1 + r$, where $q, r \in \mathbb{N}$ and $0 \le r < e_1$.
 - (4.2) Compute $[c_2, d_2, e_2] \leftarrow [c_0 qc_1, d_0 qd_1, r].$
 - (4.3) Assign $[c_0, d_0, e_0] \leftarrow [c_1, d_1, e_1]$ and $[c_1, d_1, e_1] \leftarrow [c_2, d_2, e_2]$.
- (6) **return** the triple $[c_0, d_0, e_0]$.

This algorithm is known as the *Extended Euclidean Algorithm* (EEA) and computes $[c, d, e] \in \mathbb{Z}^3$ such that $e = \gcd(a, b)$ and ac + bd = e.

- (a) Show that this is indeed an algorithm, i.e., that it stops after finitely many steps.
- (b) Show that the output is correct, i.e., a triple with the claimed properties.
 - *Hint:* Show that $ac_0 + bd_0 = e_0$ is an invariant of the algorithm, then it suffices to show that e = gcd(a, b).

Exercise 2. Let p be a prime and let $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ be the finite field with p elements. Explain how the *Extended Euclidean Algorithm* can be used to compute the inverse of a unit in \mathbb{F}_p .

Exercise 3. Let K be a field, P = K[x], let $f_1, f_2 \in P$ be non-zero polynomials, and let

$$I = Pf_1 + Pf_2 = \{ g_1f_1 + g_2f_2 \mid g_1, g_2 \in P \}.$$

- (a) Show that the set I is an ideal of P.
- (b) Show that the ideal I is generated by gcd(f₁, f₂), i.e., I = ⟨gcd(f₁, f₂)⟩.
 Recall that the greatest common divisor of f₁ and f₂, denoted by gcd(f₁, f₂), is the unique monic polynomial h ∈ P with h | f₁, h | f₂, and if g | f₁ and g | f₂ then g | h.

Exercise 4. Let p be a prime number, let $K = \mathbb{F}_p$, let $f \in P = K[x]$ be a non-zero polynomial, and let f' be the derivative of f. Show that f' = 0 if and only if f is of the form $f = g^p$ for some $g \in P$.

Exercise 5. Let p be a prime number, let $K = \mathbb{F}_p$ or \mathbb{Q} , let $f \in K[x]$ be a non-zero polynomial, and let f' be the derivative of f. Show that if f is irreducible then we have gcd(f, f') = 1.