Chair of Symbolic Computation Prof. Dr. Martin Kreuzer Julian Danner

Computeralgebra – Sheet 2

Summer term 2025

Date:	02.05.2025
Discussion:	09.05.2025

Exercise 1 (**Bachelor**, The Degree-Lexicographic Term Ordering). Let K be a field, let $P = K[x_1, \ldots, x_n]$, and let $\mathbb{T}^n = \{x_1^{\alpha_1} \cdots x_n^{\alpha_n} \in P \mid \alpha_1, \ldots, \alpha_n \in \mathbb{N}\}$ be the

set of all terms of P. We define a relation \leq_{d1} on \mathbb{T}^n as follows: $\begin{bmatrix} \alpha_1 + \cdots + \alpha_n < \beta_1 + \cdots + \beta_n, \text{ or } \end{bmatrix}$

$$x_{1}^{\alpha_{1}}\cdots x_{n}^{\alpha_{n}} \leq_{\mathbf{d}1} x_{1}^{\beta_{1}}\cdots x_{n}^{\beta_{n}} \iff \begin{bmatrix} \alpha_{1}+\cdots+\alpha_{n}=\beta_{1}+\cdots+\beta_{n} \text{ and } \alpha_{1}<\beta_{1}, \text{ or } \\ \alpha_{1}+\cdots+\alpha_{n}=\beta_{1}+\cdots+\beta_{n} \text{ and } \alpha_{1}=\beta_{1}, \alpha_{2}<\beta_{2}, \text{ or } \\ \vdots \\ \alpha_{1}+\cdots+\alpha_{n}=\beta_{1}+\cdots+\beta_{n} \text{ and } \\ \alpha_{1}=\beta_{1}, \ldots, \alpha_{n-1}=\beta_{n-1}, \alpha_{n}\leq\beta_{n}. \end{bmatrix}$$

Show that \leq_{dl} satisfies:

- (a) $t_1 \leq_{\mathtt{dl}} t_2$ implies $t_1 t_3 \leq_{\mathtt{dl}} t_2 t_3$ for all $t_1, t_2, t_3 \in \mathbb{T}^n$.
- (b) $1 \leq_{d1} t$ for all $t \in \mathbb{T}^n$.

Exercise 2 (Squarefree Parts of Polynomials I). Let K be a field of characteristic 0 and P = K[x]. Let $f \in P \setminus \{0\}$ and write $f = c \prod_{i=1}^{s} p_i^{\alpha_i}$, where $c \in K \setminus \{0\}$ and $p_1, \ldots, p_s \in P$ are distinct irreducible polynomials. Show that

$$gcd(f, f') = \prod_{i=1}^{s} p_i^{\alpha_i - 1}$$

and deduce that the squarefree part of f can be computed as

sqfree
$$(f) = \frac{f}{\gcd(f, f')}$$
.

Exercise 3 (Squarefree Parts of Polynomials II).

Let p be a prime and let $f \in P = \mathbb{F}_p[x]$ be a non-zero polynomial. Consider the following sequence of instructions.

- (1) Compute $s_1 = \gcd(f, f')$. If $s_1 = 1$, then **return** f.
- (2) If $s'_1 = 0$, then $s_1 = g^p$ for some $g \in P$. Replace f by $\frac{fg}{s_1}$ and continue with step (1).
- (3) Otherwise, compute $s_{i+1} = \gcd(s_i, s'_i)$ for i = 1, 2, ... until $s'_{i+1} = 0$. Then there is some $g \in P$ with $s_{i+1} = g^p$. Replace f by $\frac{fg}{s_1}$ and continue with step (1).

Show that this is an algorithm. It computes the squarefree part sqfree(f) of f.

Exercise 4 (Master). Implement the algorithm from Exercise 3 as a function SqFree in CoCoA. Apply it to find the squarefree part of $f = x^{31}2x^{30}x^6 + 2x^5$ in $\mathbb{F}_5[x]$.

Exercise 5 (Minimal Polynomial). Let $\alpha = \sqrt{2} + \sqrt[3]{3} + i \in \mathbb{C}$. Use CoCoA and the instructions given in the lecture to compute the minimal polynomial $\mu_{\alpha}(t) \in \mathbb{Q}[t]$ of α , i.e., the monic polynomial $\mu_a(t) \in \mathbb{Q}[t]$ of smallest degree such that $\mu_a(a) = 0$. Hint: Start with Use P::= QQ[x,y,z,t];, form the diagonal ideal, and apply the function Elim.

Exercise 6 (Implicitization Problem and Heron's Formula).

(a) Consider the following parametrized curve

$$C = \{ (t^2, t^3, t^5) \in \mathbb{Q} \mid t \in \mathbb{Q} \}.$$

What are its defining equations?

Hint: Use the function $\texttt{Elim}(\ldots)$ to compute the vanishing ideal $I_C = \langle x - t^2, y - t^3, z - t^5 \rangle \cap \mathbb{Q}[x, y, z]$ of C.

(b) Using CoCoA to find Heron's formula for the area of a triangle in terms of the lengths a, b, c of its sides.